
Die Energie des magnetischen Feldes

Magnetfeldtherapie

Durch die Energie des magnetischen Feldes wird ein verbesserter Ionenfluss in den Zellen und eine Aktivierung des Lymphflusses hervorgerufen.

Messung der Energie des magnetischen Feldes:

Einschalten:

- Stromfluss I durch die Spule baut ein magnetisches Feld auf
- Sperrrichtung der Diode D

$$\rightarrow U_{mess} = 0$$

Ausschalten:

- Selbstinduktion in der Spule erzeugt eine Induktionsspannung mit entgegengesetzter Polarität
- Durchlassrichtung der Diode
 - → Aufladung des Kondensators C

$$\rightarrow U_{\text{mess}} > 0$$

Energiebilanz:

Die Energie, die beim Abbau des magnetisches Feldes frei wird, lädt den Kondensator auf und wandelt sich in elektrische Feldenergie um.

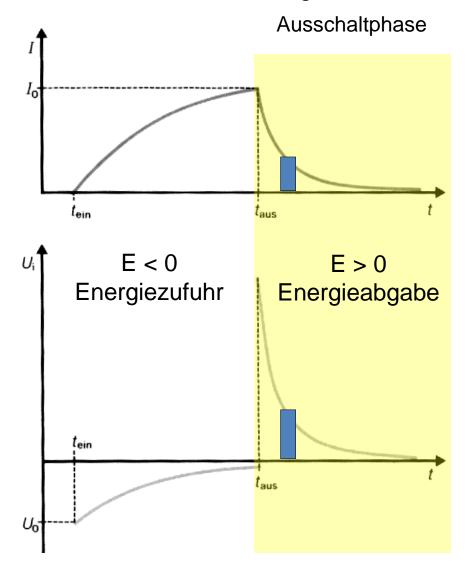
$$E_{mag}
ightarrow E_{el}$$
 bzw. $E_{mag} = E_{el}$ mit $E_{el} = \frac{1}{2} \cdot C \cdot U^2$

Die Energie des magnetischen Feldes kann (indirekt) aus der Energie des elektrischen Feldes bestimmt werden.

experimentelle Messung:

I in mA			
U _{ind} in V			

L = konstant


$$\mathsf{E}_{\mathsf{mag}} = \mathsf{f}(\mathsf{I}) ?$$

Ergebnis: U_{ind} ~ I

Die Energie des Magnetfeldes einer stromdurchflossenen Spule steigt quadratisch mit der Stromstärke. Da $E_{el} \sim U^2$ und $E_{mag} = E_{el}$ ergibt sich:

$$E_{mag} \sim I^2$$

Mathematische Betrachtung:

Durch die Selbstinduktion wird beim Ausschalten der Spule elektrische Arbeit verrichtet.

$$W_{el} = U \cdot I \cdot t$$

Da U(t) und I(t) ≠ konstant gilt für kleine abgegebene Energieanteile:

$$\Delta E = \overline{U} \cdot \overline{I} \cdot \Delta t$$

$$W_{el} = E_{ges} = \int U_{ind} \cdot I \, dt$$

$$W = \int -L \cdot \frac{dI}{dt} \cdot I \, dt$$

$$W = -L \cdot \int_{I_0}^{0} I \, dI$$

Für die Energie des magnetischen Feldes einer mit der Stromstärke I durchflossenen Spule gilt:

$$E_{mag} = \frac{1}{2} \cdot L \cdot I^2$$