Die beschleunigte Bewegung

1. Die Geschwindigkeitsmessung eines Körpers auf einer geneigten Ebene ergab folgende Messwerte:

Γ	t in s	0	0,8	1,5	2,4	3,5	5,0
	v in m/s	0	1,1	2,1	3,4	4,9	7,0

- a) Veranschaulichen Sie die Messwerte v(t) grafisch (GTR) und beschreiben Sie den Zusammenhang.
- b) Berechnen Sie aus zwei aufeinanderfolgenden Messwertepaaren den Quotient $\Delta v/\Delta t$ und treffen Sie eine Aussage zur Beschleunigung a.
- 2. Beim Start eines Autorennens wurden die ersten 50m in einer Zeit von t=4,2s zurückgelegt.
 - a) Welche Geschwindigkeit erreicht das Fahrzeug zur Zeit t, wenn die Beschleunigung als konstant betrachtet wird?
 - b) Wie lange braucht das Fahrzeug bei gleicher Beschleunigung um auf eine Geschwindigkeit von 150km/h zu kommen? Welchen Weg hat es dabei zurückgelegt?
- 3. Die Zündung einer Patrone in Lauf eines Gewehres erzeugt eine konstante Beschleunigung von etwa 5·10⁵m/s².
 - a) Welche Geschwindigkeit erreicht eine Kugel am Ende eines 60cm langen Laufes?
 - b) Leiten Sie eine Gleichung zur Berechnung der Geschwindigkeit in Abhängigkeit von der Wegstrecke her.
 - c) Veranschaulichen Sie den Zusammenhang v(s) der Aufgabe b) grafisch.
 - d) Untersuchen Sie, ob die aufgenommenen Messwerte eine gleichmäßig beschleunigt Bewegung beschreiben:

s in m	0	2	5	8	10	15
v in m/s	0	1,73	2,74	3,46	3,87	4,74

- 4. Ein Fahrzeug fährt mit einer konstanten Geschwindigkeit v=50km/h durch eine Ortschaft. Vor ihm schaltet eine Ampel auf ROT. Der Fahrer bremst sein Fahrzeug in t=3,5s gleichmäßig bis zum Stillstand ab.
 - a) Zeichnen Sie die Bewegung in einem v-t-Diagramm.
 - b) Berechnen Sie die Bremsbeschleunigung des Fahrzeuges.
 - c) Ermitteln Sie den Bremsweg des Fahrzeuges bis zum Stillstand.
 - d) Skizzieren Sie das zugehörige s-t-Diagramm.

Die beschleunigte Bewegung

1. Die Geschwindigkeitsmessung eines Körpers auf einer geneigten Ebene ergab folgende Messwerte:

t in s	0	0,8	1,5	2,4	3,5	5,0
v in m/s	0	1,1	2,1	3,4	4,9	7,0

- a) Veranschaulichen Sie die Messwerte v(t) grafisch (GTR) und beschreiben Sie den Zusammenhang.
- b) Berechnen Sie aus zwei aufeinanderfolgenden Messwertepaaren den Quotient $\Delta v/\Delta t$ und treffen Sie eine Aussage zur Beschleunigung a.
- 2. Beim Start eines Autorennens wurden die ersten 50m in einer Zeit von t=4,2s zurückgelegt.
 - a) Welche Geschwindigkeit erreicht das Fahrzeug zur Zeit t, wenn die Beschleunigung als konstant betrachtet wird?
 - b) Wie lange braucht das Fahrzeug bei gleicher Beschleunigung um auf eine Geschwindigkeit von 150km/h zu kommen? Welchen Weg hat es dabei zurückgelegt?
- 3. Die Zündung einer Patrone in Lauf eines Gewehres erzeugt eine konstante Beschleunigung von etwa 5·10⁵m/s².
 - a) Welche Geschwindigkeit erreicht eine Kugel am Ende eines 60cm langen Laufes?
 - b) Leiten Sie eine Gleichung zur Berechnung der Geschwindigkeit in Abhängigkeit von der Wegstrecke her.
 - c) Veranschaulichen Sie den Zusammenhang v(s) der Aufgabe b) grafisch.
 - d) Untersuchen Sie, ob die aufgenommenen Messwerte eine gleichmäßig beschleunigt Bewegung beschreiben:

s in m	0	2	5	8	10	15
v in m/s	0	1,73	2,74	3,46	3,87	4,74

- 4. Ein Fahrzeug fährt mit einer konstanten Geschwindigkeit v=50km/h durch eine Ortschaft. Vor ihm schaltet eine Ampel auf ROT. Der Fahrer bremst sein Fahrzeug in t=3,5s gleichmäßig bis zum Stillstand ab.
 - a) Zeichnen Sie die Bewegung in einem v-t-Diagramm.
 - b) Berechnen Sie die Bremsbeschleunigung des Fahrzeuges.
 - c) Ermitteln Sie den Bremsweg des Fahrzeuges bis zum Stillstand.
 - d) Skizzieren Sie das zugehörige s-t-Diagramm.